Mechanical Science courses are supplemented by courses in Engineering Science.
Introduction to the structure-property-processing relationship in metallic, ceramic, and polymeric materials, and to the atomic structure of materials and its influence on mechanical, electrical, and thermal properties. Students explore how alloying and thermomechanical processing modifies structure and changes the properties of materials.
Prerequisite:
CHEM 101 Minimum Grade: D
or TRAN GCHM Minimum Grade: T
Introduction to mechanical engineering design, with emphasis on the creation and communication of design ideas. Students will learn construction geometry, visualization (orthographic views, isometric views, sectional views, etc.), hand sketching and drawing of initial designs, and how to create 2-D drawings. Detailed treatment of dimensioning and tolerancing. Strong focus on the design of basic machine elements in order to prepare the student for further coursework in machine design, and senior projects, as well as direct application in the practice of mechanical engineering. The design process, including, product specifications, product descriptions, and prototype fabrication will be introduced.
Prerequisite:
ENSC 192 Minimum Grade: D
Concurrent:
MENG 291L
Hands on use of SOLIDWORKS CAD system to create 3-D models and 2-D drawings of machinery elements and assemblies. Laboratory assignments are coordinated with lecture content from MENG 291. Student projects will focus on the creation of machinery elements and assemblies in a team environment.
Concurrent:
MENG 291
Overview of manufacturing processes and how they influence design decisions. Emphasizes design for manufacturability, process comparison, and process specification.
Prerequisite:
MENG 221 Minimum Grade: D
Concurrent:
MENG 301L
Laboratory experiences with machine tools and manufacturing processes. Calculations and problem solving that reinforce lecture topics.
Concurrent:
MENG 301
The first and second laws of thermodynamics; thermophysical properties of matter, ideal gases and their mixtures; concept of entropy as applied to thermal systems.
Prerequisite:
MATH 259 Minimum Grade: D
Second Law analysis, power and refrigeration cycles, mixtures, combustion, and high speed flow. Applications of first and second law analysis to engineering systems.
Prerequisite:
MENG 321 Minimum Grade: D
Application of stress analysis and theories of failure to basic machine elements. Design of elements under static and fatigue loading. Design involving mechanical elements such as shafts, columns, flywheels, springs, and welds.
Prerequisite:
ENSC 301 Minimum Grade: D
One and multidimensional steady conduction, transient conduction, internal and external forced convection, natural convection, radiation heat transfer, boiling and condensation, heat exchangers.
Prerequisite:
MENG 321 Minimum Grade: D
and ENSC 352 Minimum Grade: D
and MATH 260 Minimum Grade: D
Basic concepts of measurement and analysis of measurement uncertainties and experimental data. Study of transducers and investigation of data acquisition, signal conditioning, and data processing hardware typically utilized in performing mechanical measurements.
Prerequisite:
EENG 201 Minimum Grade: D
and ENSC 371 Minimum Grade: D
and MATH 321 Minimum Grade: D
Concurrent:
MENG 411L
Laboratory exercises supporting the topics covered in MENG 411.
Concurrent:
MENG 411
Study of the techniques used for measuring displacement, velocity, acceleration, force, pressure, flow, temperature, and strain. Investigation of the proper application and the associated limitations of the techniques and of the required instruments. The topics are studied within the context of obtaining experimental solutions to engineering problems in thermodynamics, heat transfer, fluid mechanics, mechanics, and strength of materials.
Prerequisite:
MENG 411 Minimum Grade: D
and MENG 341 Minimum Grade: D
Concurrent:
MENG 412L
Laboratory exercises supporting the topics covered in MENG 412.
Concurrent:
MENG 412
Elements of vibrating systems. Free, forced harmonic and transient vibrations of single-degree-of-freedom systems with and without damping. Vibration isolation and control. Two-degree-of-freedom systems. Application of matrix techniques.
Prerequisite:
ENSC 306 Minimum Grade: D
and ENSC 371 Minimum Grade: D
Continuation of MENG 434. Practical applications of vibration theory to topics such as: Control and suppression of vibrations in machinery; vibration isolation and damping treatments; dynamic vibration absorbers; balancing of rotating and reciprocating machinery; critical speed evaluation of flexible rotors; ground vehicle response to road profile excitation and evaluation of ride performance; vibration in electronic equipment and prevention of vibration failures; aircraft vibration and flutter; and response of structures to earthquakes.
Prerequisite:
MENG 434 Minimum Grade: D
Advanced topics in conduction, contact resistance, multidimensional transients, periodic heat transfer, non-uniform heat generation, phase change heat transfer, fin heat transfer, and design of shell-and-tube heat exchangers.
Prerequisite:
MENG 341 Minimum Grade: D
Introduction to the techniques used in the analysis and design of heating, ventilating, and air conditioning (HVAC) systems. Topics include the arrangement of typical air conditioning systems (i.e. all air systems, air and water systems, etc.), moist air processes, comfort and health criteria for indoor air quality, heating and cooling loads, piping system design, building air distribution, and operational principles and performance parameters of typical components (i.e., cooling towers, air washers, heating and cooling coils, etc.)
Prerequisite:
MENG 341 Minimum Grade: D
This course is designed for students to understand the basic engineering principles of clean, renewable, and advanced energy conversion technologies. This course features an overview of various energy sources, their characteristics, and in-depth coverage of engineering technologies of converting these sources to electricity. Students should understand the engineering principles and limitations of each energy conversion technology. They will gain the ability to choose appropriate energy conversion techniques based on the application and energy resource availability.
Prerequisite:
MENG 322 Minimum Grade: D
and MENG 341 Minimum Grade: D
Continuation of material presented in MENG 330. Design topics involving mechanical elements such as bolts, spur and helical gears, journal bearings and flexible mechanical elements.
Prerequisite:
MENG 330 Minimum Grade: D
Principles of Design for Manufacturing (DFM) are taught in the context of manufacturing engineering. Tool design, part features, tolerances and material processing parameters are discussed as examples to demonstrate how overall manufacturing costs are affected. Communication within the supply chain, upstream and downstream, are emphasized to achieve design and manufacturing costs goals. Traditional and nontraditional manufacturing (e.g. additive manufacturing) examples are used to show how DFM principles may be employed in globalized manufacturing. Recommendations from Bralla, Design for Manufacturing, are covered. Value engineering, outsourcing, reshoring, maquiladoras and other manufacturing trends are discussed.
Prerequisite:
MENG 221 Minimum Grade: D
Principles of feedback control. Mathematical modeling and analysis of dynamic physical elements and systems. . Linearization to approximate dynamics with linear time-invariant models. Transient and steady-state response of first and second-order systems. Use of Laplace transforms. System response with zeros and additional poles. Transfer functions and block diagrams. Stability criteria and steady-state errors. Root locus and frequency response methods.
Prerequisite:
ENSC 306 Minimum Grade: D
and ENSC 371 Minimum Grade: D
and EENG 201 Minimum Grade: D
Development of the stiffness matrix method applied to bar and beam elements. The plane problem is discussed and plane elements are presented. The Isoperimetric formulation is introduced. Modeling and accuracy in linear analysis is considered. Utilizes a commercial finite element program in problem solving. One hour lecture and two hour computer Laboratory each week.
Prerequisite:
ENSC 301 Minimum Grade: D
Background of composites, stress-strain relations for composite materials, extension and bending of symmetric laminates, failure analysis of fiber-reinforced materials, design examples and design studies, non-symmetric laminates, micromechanics of composites, properties of fibers and matrix materials.
Prerequisite:
MENG 221 Minimum Grade: D
Methods of materials selection. Systematic approaches for selecting optimal material when competing criteria exist. Real applications and case studies are included. Several topics including fracture mechanics, corrosion, titanium alloys, etc. are covered.
Prerequisite:
MENG 221 Minimum Grade: D
Ideal fluid flow. Laminar and turbulent boundary layer flows, conservation equations, and solution methods. Turbo machinery. Unsteady flow problems. Basic computational fluid mechanics.
Prerequisite:
ENSC 352 Minimum Grade: D
A course designed to familiarize the student with manufacturing decisions required in the industrial sector. Developing manufacturing strategies, integrating process alternatives, equipment selection analysis, process costs, and total integration of manufacturing systems are assessed quantitatively and qualitatively to maximize outcomes. Supply chain and lean topics are covered.
Prerequisite:
MENG 301 Minimum Grade: D