Matthew Cremeens, Ph.D.

Associate Professor of Chemistry

Dr. Cremeens

Contact Information

Education & Curriculum Vitae

Ph.D. Chemistry, Cornell University, 2004

Courses Taught

Organic Chemistry I & II 

Publications while at Gonzaga University.   

D’Ambruoso, G. D.; Cremeens, M. E.; Hendricks, B. R. “Web-based animated tutorials using screen capturing software for molecular modeling and spectroscopic acquisition and processing.” J. Chem. Ed. 2018, 95, 666-671.

Neelay, O. P.; Peterson C. A.; Snavely, M. E.; Brown, T. C.; TeclaMariam, A. F.; Campbell, J. A.; Blake, A. M.; Schneider, S. C.; Cremeens, M. E.  “Antimicrobial peptides interact with peptidoglycan” J. Mol. Struct. 2017, 1146, 329-336.

Schneider, S. C.; Brown, T. C.; Gonzalez, J. D.; Levonyak, N. S.; Rush, L. A.; Cremeens M. E. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles J. Mol. Struct. 2016, 1106, 108-113.

Patton, D. A.; Cremeens, M. E. “Organometallic Catalysts for Intramolecular Hydroamination of Alkenes.” Review Journal of Chemistry, 2014, 4, 1-20.

Gonzalez, J. D.; Levonyak, N. S.; Schneider, S. C.; Smith, M. J.; Cremeens, M. E.  Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the -MSH peptide's side-chain interactions with a micelle model membrane.”  J. Mol. Struct. 2014, 1056-1057, 7-12.  

Stumetz, K. S.; Nadeau, J. T.; Cremeens, M. E. “Potential Non-adiabatic Reactions:  Ring-opening 4,6-Dimethylidenebicyclo [3.1.0]hex-2-ene Derivatives to Aromatic Reactive Intermediates.” J. Org. Chem. 2013, 78, 10878–10884.

Hickert, A. S.; Durgan, A. C.; Patton, D. A.; Blake, S. A.; Cremeens, M. E. “A B3LYP investigation of the conformational and environmental sensitivity of carbon–deuterium frequencies of aryl-perdeuterated phenylalanine and tryptophan.”  Theor. Chem. Acc. 2011, 130, 883-889.
Wood Combustion … In contrast to petroleum, lignocellulosic biomass (wood) is considered to be a carbon neutral fuel because it takes in the carbon that it will give off.  However, there can be negative consequences. Incomplete wood combustion gives rise to persistent organic pollutants that accumulate in our air and water streams.  By elucidating the detailed mechanism for the formation of these pollutants during the incomplete combustion of wood, we aim to unearth a key mechanistic detail that could be used to minimize their formation.  More specifically, we aim to evaluate the impact of the biological matrix of lignin and cellulose on polycyclic aromatic hydrocarbon and dioxin formation from incomplete combustion of lignocellulosic biomass by employing both experimental and computational methods. The goals of our work are to (1) experimentally characterize incomplete combustion products with varying matrix additives, (2) computationally characterize cellulose decomposition and identify potential fragments that impact the conversion of lignin into dioxin, and (3) combine experimental and computational results to guide subsequent experiments and calculations.