Matthew Cremeens, Ph.D.

Professor of Chemistry

Dr. Cremeens

Contact Information

Education & Curriculum Vitae

Ph.D. Chemistry, Cornell University, 2004

Courses Taught

Organic Chemistry I & II 

Publications while at Gonzaga University.   

D’Ambruoso, G. D.; Cremeens, M. E.; Hendricks, B. R. “Web-based animated tutorials using screen capturing software for molecular modeling and spectroscopic acquisition and processing.” J. Chem. Ed. 2018, 95, 666-671.

Neelay, O. P.; Peterson C. A.; Snavely, M. E.; Brown, T. C.; TeclaMariam, A. F.; Campbell, J. A.; Blake, A. M.; Schneider, S. C.; Cremeens, M. E.  “Antimicrobial peptides interact with peptidoglycan” J. Mol. Struct. 2017, 1146, 329-336.

Schneider, S. C.; Brown, T. C.; Gonzalez, J. D.; Levonyak, N. S.; Rush, L. A.; Cremeens M. E. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles J. Mol. Struct. 2016, 1106, 108-113.

Patton, D. A.; Cremeens, M. E. “Organometallic Catalysts for Intramolecular Hydroamination of Alkenes.” Review Journal of Chemistry, 2014, 4, 1-20.

Gonzalez, J. D.; Levonyak, N. S.; Schneider, S. C.; Smith, M. J.; Cremeens, M. E.  Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the -MSH peptide's side-chain interactions with a micelle model membrane.”  J. Mol. Struct. 2014, 1056-1057, 7-12.  

Stumetz, K. S.; Nadeau, J. T.; Cremeens, M. E. “Potential Non-adiabatic Reactions:  Ring-opening 4,6-Dimethylidenebicyclo [3.1.0]hex-2-ene Derivatives to Aromatic Reactive Intermediates.” J. Org. Chem. 2013, 78, 10878–10884.

Hickert, A. S.; Durgan, A. C.; Patton, D. A.; Blake, S. A.; Cremeens, M. E. “A B3LYP investigation of the conformational and environmental sensitivity of carbon–deuterium frequencies of aryl-perdeuterated phenylalanine and tryptophan.”  Theor. Chem. Acc. 2011, 130, 883-889.
 
The research plan in the Cremeens' lab aims to amplify an existing collaboration between Gonzaga University, University College London, University of Bristol, and Whitworth University. We make pharmaceutically relevant molecular cores, grow crystals, acquire structural data, and share data with theoreticians in London. Overall, we aim to build a database of information that will lead to a deeper understanding of how crystals form; the project focuses on basic science relevant to the pharmaceutical industry.